

MLLabelUtils.jl’s documentation

This package represents a community effort to provide the necessary
functionality for interpreting class-predictions, as well as
converting classification targets from one encoding to another.
As such it is part of the JuliaML [https://github.com/JuliaML]
ecosystem.

The main intend of this package is to be a light-weight back-end
for other JuliaML packages that deal with classification
problems. In particular, this library is designed with package
developers in mind that require their classification-targets to
be in a specific format. To that end, the core focus of this
package is to provide all the tools needed to deal with
classification targets of arbitrary format. This includes
asserting if the targets are of a desired encoding, inferring the
concrete encoding the targets are in and how many classes they
represent, and converting from their native encoding to the
desired one.

From an end-user’s perspective one normally does not need to import
this package directly. That said, some functionality (in particular
convertlabels()) can also be useful to end-users who code
their own special Machine Learning scripts.

Where to begin?

If this is the first time you consider using MLLabelUtils for
your machine learning related experiments or packages, make sure
to check out the “Getting Started” section; specifically “How to
…?”, which lists some of most common scenarios and links to the
appropriate places that should guide you on how to approach these
scenarios using the functionality provided by this or other
packages.

	Getting Started
	Installation

	Overview

	How to … ?

	Getting Help

API Documentation

This section gives a more detailed treatment of all the exposed
functions and their available methods.
We start by discussing what we understand under terms such as
“classification targets” and the available functionality to compute
properties about them.

	Classification Targets
	Terms and Definitions

	Determine the Labels

	Number of Labels

	Mapping Labels to Observations

	Frequency of Labels

Next we focus on label-encodings. We will show how to create them
and how they can be used to transform classification targets from
one encoding-convention to another.
Some even define methods for a classification function that can
be used to transform raw mode-predictions into a class-label.

	Working with Encodings
	Inferring the Encoding

	Asserting Assumptions

	Properties of an Encoding

	Converting to/from Indices

	Converting between Encodings

	Classifying Predictions

Lastly, we provide an organized list of the implemented label-encoding
that this package exposes. We will also discuss their properties
and differences or other nuances.

	Supported Encodings
	Abstract LabelEncoding

	TrueFalse

	ZeroOne

	MarginBased

	OneVsRest

	Indices

	OneOfK

	NativeLabels

	FuzzyBinary

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

MLLabelUtils is the result of a collaborative effort to design an
efficient but also convenient-to-use library for working with
the most commonly utilized class-label encodings in Machine Learning.
As such, this package provides functionality to derive or assert
properties about some label-encoding or target array, as well as
the functions needed to convert given targets into a different
format.

Installation

To install MLLabelUtils.jl [https://github.com/JuliaML/MLLabelUtils.jl], start up Julia [http://julialang.org/] and type the following code-snipped
into the REPL. It makes use of the native Julia package manger.

Pkg.add("MLLabelUtils")

Additionally, for example if you encounter any sudden issues,
or in the case you would like to contribute to the package,
you can manually choose to be on the latest (untagged) version.

Pkg.checkout("MLLabelUtils")

Overview

Let us take a look at some examples (with only minor explanation)
to get a feeling for what one can do with this package. Once
installed the package can be imported just as any other Julia
package.

using MLLabelUtils

For starters, the library provides a few utility functions to
compute various properties of the target array. These include the
number of labels (see nlabel()), the labels themselves (see
label()), and a mapping from label to the elements of the
target array (see labelmap() and labelfreq()).

julia> true_targets = [0, 1, 1, 0, 0];

julia> label(true_targets)
2-element Array{Int64,1}:
 1
 0

julia> nlabel(true_targets)
2

julia> labelmap(true_targets)
Dict{Int64,Array{Int64,1}} with 2 entries:
 0 => [1,4,5]
 1 => [2,3]

julia> labelfreq(true_targets)
Dict{Int64,Int64} with 2 entries:
 0 => 3
 1 => 2

Tip

Because labelfreq() utilizes a Dict to store its result,
it is straight forward to visualize the class distribution
(using the absolute frequencies) right in the REPL using the
UnicodePlots.jl [https://github.com/Evizero/UnicodePlots.jl]
package.

julia> using UnicodePlots
julia> barplot(labelfreq([:yes,:no,:no,:maybe,:yes,:yes]), symb="#")
┌──┐
yes │##################################### 3 │
maybe │############ 1 │
no │######################### 2 │
└──┘

 Classification Targets

Classification Targets

In this section we will outline the functionality that this package
provides in order to work with classification targets.
We will start by discussion the terms we use and how they are
used in the context of this package.

Terms and Definitions

In a classification setting one usually treats the desired output
variable (also called ground truths, or targets) as a
discrete categorical variable. That is true even if the values
themself are of numerical type, which they often are for
practical reasons.

We use the term targets when we talk about concrete data.
Concretely, targets are the desired output of some dataset and further
themself also part of the dataset. If a dataset includes targets we
call it labeled data.
In a labeled dataset, each observation has its own target.
Thus we have as many targets as we have observations, as the target
is treated as a part of each observation.

Tip

Let us look at an example of what targets could look like and how
they relate to some dataset, or in this case data subset.
The following code snipped loads the first 3 observations
of the iris dataset using the
RDatasets [https://github.com/johnmyleswhite/RDatasets.jl]
package.

julia> using RDatasets
julia> iris = head(dataset("datasets", "iris"), 3)
3×5 DataFrames.DataFrame
│ Row │ SepalLength │ SepalWidth │ PetalLength │ PetalWidth │ Species │
├─────┼─────────────┼────────────┼─────────────┼────────────┼──────────┤
│ 1 │ 5.1 │ 3.5 │ 1.4 │ 0.2 │ "setosa" │
│ 2 │ 4.9 │ 3.0 │ 1.4 │ 0.2 │ "setosa" │
│ 3 │ 4.7 │ 3.2 │ 1.3 │ 0.2 │ "setosa" │

For this data subset the targets would be
["setosa","setosa","setosa"].
Note how only one of the three available classes of the dataset
is represented here.

 Working with Encodings

Working with Encodings

Now that we have an understanding of how to extract the label-related
information from our targets, let us consider how to instantiate (or
infer) a label-encoding, and what we can do with it once we have one.
In particular, these encodings will enable us to transform the targets
from one representation into another without losing the ability to
convert them back afterwards.

Inferring the Encoding

In many cases we may not want to just simply assume or guess the
particular encoding that some user-provided targets are in.
Instead we would rather let the targets themself inform us what
encoding they are using.
To that end we provide the function labelenc().

	
labelenc(vec) → LabelEncoding

	Tries to determine the most approriate label-encoding to describe
the given vector vec, based on the result of label(vec).
Note that in most cases this function is not typestable, because
the eltype of vec is usually not enough to infer the encoding
or number of labels reliably.

	Parameters:

	vec (AbstractVector) – The classification targets in vector form.

	Returns:

	The label-encoding that is deemed most approriate
to describe the values found in vec.

julia> labelenc([:yes,:no,:no,:maybe,:yes,:no])
MLLabelUtils.LabelEnc.NativeLabels{Symbol,3}(Symbol[:yes,:no,:maybe],Dict(:yes=>1,:maybe=>3,:no=>2))

julia> labelenc([-1,1,1,-1,1])
MLLabelUtils.LabelEnc.MarginBased{Int64}()

julia> labelenc(UInt8[0,1,1,0,1])
MLLabelUtils.LabelEnc.ZeroOne{UInt8,Float64}(0.5)

julia> labelenc([false,true,true,false,true])
MLLabelUtils.LabelEnc.TrueFalse()

For matrices we allow an additional (but optional) parameter with
which the user can specify the array dimension that denotes the
observations.

	
labelenc(mat[, obsdim]) → LabelEncoding

	Computes the concrete matrix-based label-encoding that is used,
by determining the size of the matrix for the dimension that is
not used for denoting the observations.

	Parameters:

	
	mat (AbstractMatrix) – An numeric matrix that is assumed to be in
the form of a one-hot encoding or similar.

	obsdim (ObsDimension) – Optional. Denotes which of the two array
dimensions of mat denotes the
observations. It can be specified as
a type-stable positional argument or
a smart keyword.
Defaults to Obsdim.Last().
see ?ObsDim for more information.

	Returns:

	The label-encoding that is deemed most approriate
to describe the structure and values found in mat.

julia> labelenc([0 1 0 0; 1 0 1 0; 0 0 0 1])
MLLabelUtils.LabelEnc.OneOfK{Int64,3}()

julia> labelenc(Float32[0 1; 1 0; 0 1; 0 1], obsdim = 1)
MLLabelUtils.LabelEnc.OneOfK{Float32,2}()

Asserting Assumptions

When writing a function that requires the classification targets to
be in a specific encoding (for example \(\{1, -1\}\) in the case
of SVMs), it can be useful to check if the user-provided targets are
already in the appropriate encoding, of if they first have to be
converted.
To check if the targets are of a specific encoding, or family of
encodings, we provide the function islabelenc().

	
islabelenc(vec, encoding) → Bool

	Checks if the given values in vec can be described as being
produced by the given encoding. This function does not only
check the values but also for the correct type.
Furthermore it also checks if the total number of labels is
appropriate for what the encoding expects it to be.

	Parameters:

	
	vec (AbstractVector) – The classification targets in vector form.

	encoding (LabelEncoding) – A concrete instance of a
label-encoding that one wants to work
with.

	Returns:

	True, if both the values in vec as well as their types
are consistent with the given encoding.

julia> islabelenc([0,1,1,0,1], LabelEnc.ZeroOne(Int))
true

julia> islabelenc([0,1,1,0,1], LabelEnc.ZeroOne(Float64))
false

julia> islabelenc([0,1,1,0,1], LabelEnc.MarginBased(Int))
false

julia> islabelenc(Int8[-1,1,1,-1,1], LabelEnc.MarginBased(Int8))
true

julia> islabelenc(Int8[-1,1,1,-1,1], LabelEnc.MarginBased(Int16))
false

julia> islabelenc([2,1,2,3,1], LabelEnc.Indices(Int,3))
true

julia> islabelenc([2,1,2,3,1], LabelEnc.Indices(Int,4)) # it allows missing labels
true

julia> islabelenc([2,1,2,3,1], LabelEnc.Indices(Int,2)) # more labels than expected
false

Similar to label() we treat matrices in a special way to
account for the fact that information about the number of labels
is contained in the size of a matrix and not its values.
Additionally the user has the freedom to choose which matrix
dimension denotes the observations.

	
islabelenc(mat, encoding[, obsdim]) → Bool

	Checks if the values and the structure of the given matrix mat
is consistent with the specified encoding.
This functions also checks for the correct type and dimensions.

	Parameters:

	
	mat (AbstractMatrix) – The classification targets in matrix form.

	encoding (LabelEncoding) – A concrete instance of a matrix-based
label-encoding that one wants to work
with.

	obsdim (ObsDimension) – Optional. Denotes which of the two array
dimensions of mat denotes the
observations. It can be specified as
a type-stable positional argument or
a smart keyword.
Defaults to Obsdim.Last().
see ?ObsDim for more information.

	Returns:

	True, if the values in mat, its eltype, and the
shape of mat is consistent with the given encoding.

julia> islabelenc([0 1 0 0; 1 0 1 0; 0 0 0 1], LabelEnc.OneOfK(Int,3))
true

julia> islabelenc([0 1 0 0; 1 0 1 0; 0 0 0 1], LabelEnc.OneOfK(Int8,3))
false

julia> islabelenc([1 1 0 0; 1 0 1 0; 0 0 0 1], LabelEnc.OneOfK(Int,3)) # matrix is not one-hot
false

julia> islabelenc([0 1 0 0; 1 0 1 0; 0 0 0 1], LabelEnc.OneOfK(Int,4)) # only 3 rows
false

julia> islabelenc([0 1; 1 0; 0 1; 0 1], LabelEnc.OneOfK(Int,2), obsdim = 1)
true

julia> islabelenc(UInt8[0 1; 1 0; 0 1; 0 1], LabelEnc.OneOfK(Int,2), obsdim = 1)
false

julia> islabelenc(UInt8[0 1; 1 0; 0 1; 0 1], LabelEnc.OneOfK(UInt8,2), obsdim = 1)
true

So far islabelenc() was very restrictive concerning the element
types of the given target array. In many cases, however, we may not
actually care too much about the concrete numeric type but only if
the encoding-scheme itself is followed. In fact we usually don’t
want to be restrictive about concrete types at all, since we
have Julia’s multiple-dispatch system to take care of that later on.
In other words we may be more interested in asserting if the labels
of the given targets belong to a family of possible label-encodings.

	
islabelenc(vec, type) → Bool

	Checks is the given values in vec can be described as being
produced by any possible instance of the given type.
In other word this function checks if the labels in vec can
be described as being consistent with the family of label-encodings
specified by type.
This means that the check is much more tolerant concerning the
eltype and the total number of labels, since some families of
encodings are approriate for any number of labels.

	Parameters:

	
	vec (AbstractVector) – The classification targets in vector form.

	type (DataType) – Any subtype of LabelEncoding{T,K,1}

	Returns:

	True, if the values in vec are consistent with the
given family of encodings specified by type.

julia> islabelenc([0,1,1,0,1], LabelEnc.ZeroOne)
true

julia> islabelenc(UInt8[0,1,1,0,1], LabelEnc.ZeroOne)
true

julia> islabelenc([0,1,1,0,1], LabelEnc.MarginBased)
false

julia> islabelenc(Float32[-1,1,1,-1,1], LabelEnc.MarginBased)
true

julia> islabelenc(Int8[-1,1,1,-1,1], LabelEnc.MarginBased)
true

julia> islabelenc([2,1,2,3,1], LabelEnc.Indices)
true

julia> islabelenc(Int8[2,1,2,3,1], LabelEnc.Indices)
true

julia> islabelenc(Int8[2,1,2,3,1], LabelEnc.Indices{Int}) # restrict type but not nlabels
false

We again provide a special version for matrices.

	
islabelenc(mat, type[, obsdim]) → Bool

	Checks is the values and the structure of the given matrix mat
can be described as being produced by any possible instance of
the given type.
This means that the check is much more tolerant concerning the
eltype and the size of the matrix, since some families of
encodings are approriate for any number of labels.

	Parameters:

	
	mat (AbstractMatrix) – The classification targets in matrix form.

	type (DataType) – Any subtype of LabelEncoding{T,K,2}

	obsdim (ObsDimension) – Optional. Denotes which of the two array
dimensions of mat denotes the
observations. It can be specified as
a type-stable positional argument or
a smart keyword.
Defaults to Obsdim.Last().
see ?ObsDim for more information.

	Returns:

	True, if the values in mat are consistent with the
given family of encodings specified by type.

julia> islabelenc([0 1 0 0; 1 0 1 0; 0 0 0 1], LabelEnc.OneOfK)
true

julia> islabelenc(Int8[0 1 0 0; 1 0 1 0; 0 0 0 1], LabelEnc.OneOfK)
true

julia> islabelenc([1 1 0 0; 1 0 1 0; 0 0 0 1], LabelEnc.OneOfK) # matrix is not one-hot
false

julia> islabelenc([0 1; 1 0; 0 1; 0 1], LabelEnc.OneOfK, obsdim = 1)
true

julia> islabelenc(UInt8[0 1; 1 0; 0 1; 0 1], LabelEnc.OneOfK, obsdim = 1)
true

julia> islabelenc(UInt8[0 1; 1 0; 0 1; 0 1], LabelEnc.OneOfK{Int32}, obsdim = 1) # restrict type but not nlabels
false

Properties of an Encoding

Once we have an instance of some label-encoding, we can compute
a number of useful properties about it.
For example we can query all the labels that an encoding uses
to represent the classes.

	
label(encoding) → Vector

	Returns all the labels that a specific encoding uses in their
approriate order.

	Parameters:

	encoding (LabelEncoding) – The specific label-encoding.

	Returns:

	The unique labels in the form of a vector. In the case
of two labels, the first element will represent the
positive label and the second element the negative label
respectively.

julia> label(LabelEnc.ZeroOne(UInt8))
2-element Array{UInt8,1}:
 0x01
 0x00

julia> label(LabelEnc.MarginBased())
2-element Array{Float64,1}:
 1.0
 -1.0

julia> label(LabelEnc.Indices(Float32,5))
5-element Array{Float32,1}:
 1.0
 2.0
 3.0
 4.0
 5.0

For convenience one can also just query for the label that
corresponds to the positive class or the negative class respectively.
These helper functions are only defined for binary label-encoding and
will throw an MethodError for multi-class encodings.

	
poslabel(encoding)

	If the encoding is binary it will return the positive label of it.
The function will throw an error otherwise.

	Parameters:

	encoding (LabelEncoding) – The specific label-encoding.

	Returns:

	The value representing the positive label of the given
encoding in the approriate type.

julia> poslabel(LabelEnc.ZeroOne(UInt8))
0x01

julia> poslabel(LabelEnc.MarginBased())
1.0

julia> poslabel(LabelEnc.Indices(Float32,2))
1.0f0

julia> poslabel(LabelEnc.Indices(Float32,5))
ERROR: MethodError: no method matching poslabel(::MLLabelUtils.LabelEnc.Indices{Float32,5})

	
neglabel(encoding)

	If the encoding is binary it will return the negative label of it.
The function will throw an error otherwise.

	Parameters:

	encoding (LabelEncoding) – The specific label-encoding.

	Returns:

	The value representing the negative label of the given
encoding in the approriate type.

julia> neglabel(LabelEnc.ZeroOne(UInt8))
0x00

julia> neglabel(LabelEnc.MarginBased())
-1.0

julia> neglabel(LabelEnc.Indices(Float32,2))
2.0f0

julia> neglabel(LabelEnc.Indices(Float32,5))
ERROR: MethodError: no method matching neglabel(::MLLabelUtils.LabelEnc.Indices{Float32,5})

We can also query the number of labels that a concrete encoding uses.
In other words we can query the number of classes the given
label-encoding is able to represent.

	
nlabel(encoding) → Int

	Returns the number of labels that a specific encoding uses.

	Parameters:

	encoding (LabelEncoding) – The specific label-encoding.

julia> nlabel(LabelEnc.ZeroOne(UInt8))
2

julia> nlabel(LabelEnc.NativeLabels([:a,:b,:c]))
3

More interestingly, we can infer the number of labels for a family
of encodings. This allows for some compile time decisions, but only
work for some types of encodings (i.e. binary).

	
nlabel(type) → Int

	Returns the number of labels that the family of encodings type
can describe.
Note that this function will fail if the number of labels can
not be inferred from the given type.

	Parameters:

	type (DataType) – Some subtype of LabelEncoding{T,K,M}
with a fixed K

	Returns:

	The type-parameter K of type.

julia> nlabel(LabelEnc.ZeroOne)
2

julia> nlabel(LabelEnc.NativeLabels)
ERROR: ArgumentError: number of labels could not be inferred for the given type

We can also query a family of encodings for their label-type.
In this case we decided to not throw an error if the type can not
be inferred but instead return the most specific abstract type.

	
labeltype(type) → DataType

	Determine the type of the labels represented by the given
family of label-encoding. If the type can not be inferred than
Any is returned.

	Parameters:

	type (DataType) – Some subtype of LabelEncoding{T,K,M}

	Returns:

	The type-parameter T of type if specified,
or the most specific abstract type otherwise.

julia> labeltype(LabelEnc.TrueFalse)
Bool

julia> labeltype(LabelEnc.ZeroOne{Int})
Int64

julia> labeltype(LabelEnc.ZeroOne)
Number

julia> labeltype(LabelEnc.NativeLabels)
Any

Converting to/from Indices

As stated before, the order of the of label() matters.
In a binary setting, for example, the first label is interpreted as
the positive class and the second label as the negative class.
This is simply the arbitrary convention that we follow.
That said, even in a multi-class setting it is important to be
consistent with the ordering. This is crucial in order to make sure
that converting to a different encoding and then converting back
yields the original values.

Every encoding understands the concept of a label-index,
which is a unique representation of a class that all encodings share.
For example the positive label of a binary label-encoding always
has the label-index 1 and the negative 2 respectively.

To convert a label-index into the label that a specific encoding uses
to represent the underlying class we provide the function
ind2label().

	
ind2label(index, encoding)

	Converts the given index into the corresponding label defined
by the encoding. Note that in the binary case, index = 1
represents the positive label and index = 2 the negative label.

This function supports broadcasting.

	Parameters:

	
	index (Int) – Index of the desired label. This variable can
be specified either as an Int or as a Val.
Note that indices are one-based.

	encoding (LabelEncoding) – The encoding one wants to get the
label from.

	Returns:

	The label of the specified index for the specified
encoding.

julia> ind2label(1, LabelEnc.MarginBased(Float32))
1.0f0

julia> ind2label(Val{1}, LabelEnc.MarginBased(Float32))
1.0f0

julia> ind2label(2, LabelEnc.MarginBased(Float32))
-1.0f0

julia> ind2label(3, LabelEnc.OneOfK(Int8,4))
4-element Array{Int8,1}:
 0
 0
 1
 0

julia> ind2label(3, LabelEnc.NativeLabels([:a,:b,:c,:d]))
:c

julia> ind2label.([1,2,2,1], LabelEnc.ZeroOne(UInt8)) # broadcast support
4-element Array{UInt8,1}:
 0x01
 0x00
 0x00
 0x01

We also provide inverse function for converting a label of a specific
encoding into the corresponding label-index.
Note that this function does not check if the given label is of the
expected type, but simply that it is of the appropriate value.

	
label2ind(label, encoding) → Int

	Converts the given label into the corresponding index defined
by the encoding. Note that in the binary case, the positive label
will result in the index 1 and the negative label in the index
2 respectively.

This function supports broadcasting.

	Parameters:

	
	label (Any) – A label in the format familiar to the encoding.

	encoding (LabelEncoding) – The encoding to compute the
label-index with.

	Returns:

	The index of the specified label for the specified
encoding.

julia> label2ind(1.0, LabelEnc.MarginBased())
1

julia> label2ind(-1.0, LabelEnc.MarginBased())
2

julia> label2ind([0,0,1,0], LabelEnc.OneOfK(4))
3

julia> label2ind(:c, LabelEnc.NativeLabels([:a,:b,:c,:d]))
3

julia> label2ind.([1,0,0,1], LabelEnc.ZeroOne()) # broadcast support
4-element Array{Int64,1}:
 1
 2
 2
 1

Converting between Encodings

In the case that the given targets are not in the encoding that your
algorithm expects them to be in, you may want to convert them into the
format you require.
For that purpose we expose the function convertlabel().

	
convertlabel(dst_encoding, src_label, src_encoding)

	Converts the given input label src_label from src_encoding
into the corresponding label described by the desired output
encoding dst_encoding.

Note that both encodings are expected to be vector-based, meaning
that this method does not work for LabelEnc.OneOfK.
It does, however, support broadcasting.

	Parameters:

	
	dst_encoding (LabelEncoding) – The vector-based label-encoding
that should be used to produce
the output label.

	src_label (Any) – The input label one wants to convert. It is
expected to be consistent with src_encoding.

	src_encoding (LabelEncoding) – A vector-based label-encoding
that is assumed to have produced
the given src_label.

	Returns:

	The label from dst_encoding that corresponds to
src_label in src_encoding

julia> convertlabel(LabelEnc.OneOfK(2), -1, LabelEnc.MarginBased()) # OneOfK is not vector-based
ERROR: MethodError: no method matching [...]

julia> convertlabel(LabelEnc.NativeLabels([:a,:b,:c,:d]), 3, LabelEnc.Indices(4))
:c

julia> convertlabel(LabelEnc.ZeroOne(), :yes, LabelEnc.NativeLabels([:yes,:no]))
1.0

julia> convertlabel(LabelEnc.ZeroOne(), :no, LabelEnc.NativeLabels([:yes,:no]))
0.0

julia> convertlabel(LabelEnc.MarginBased(Int), 0, LabelEnc.ZeroOne())
-1

julia> convertlabel(LabelEnc.NativeLabels([:a,:b]), -1, LabelEnc.MarginBased())
:b

julia> convertlabel.(LabelEnc.NativeLabels([:a,:b]), [-1,1,1,-1], LabelEnc.MarginBased()) # broadcast support
4-element Array{Symbol,1}:
 :b
 :a
 :a
 :b

Aside from the one broadcast-able method that is implemented for
converting single labels, we provide a range of methods that work on
whole arrays.
These are more flexible because by having an array as input these
methods have more information available to make reasonable
decisions. As a consequence of that can we consider the
“source-encoding” parameter optional, because these methods can
now make use of labelenc() internally to infer it
automatically.

	
convertlabel(dst_encoding, arr[, src_encoding][, obsdim])

	Converts the given array arr from the src_encoding into the
dst_encoding. If src_encoding is not specified it will be
inferred automaticaly using the function labelenc().
This should not negatively influence type-inference.

Note that both encodings should have the same number of labels,
or a MethodError will be thrown in most cases.

	Parameters:

	
	dst_encoding (LabelEncoding) – The desired output format.

	arr (AbstractArray) – The input targets that should be
converted into the encoding specified
by dst_encoding.

	src_encoding (LabelEncoding) – The input encoding that arr
is expected to be in.

	obsdim (ObsDimension) – Optional. Only possible if one of the
two encodings is a matrix-based encoding.
Defines which of the two array
dimensions denotes the observations.
It can be specified as a type-stable
positional argument or a smart keyword.
Defaults to Obsdim.Last().
see ?ObsDim for more information.

	Returns:

	A converted version of arr using the specified
output encoding dst_encoding.

julia> convertlabel(LabelEnc.NativeLabels([:yes,:no]), [-1,1,-1,1,1,-1])
6-element Array{Symbol,1}:
 :no
 :yes
 :no
 :yes
 :yes
 :no

julia> convertlabel(LabelEnc.OneOfK(Float32,2), [-1,1,-1,1,1,-1])
2×6 Array{Float32,2}:
 0.0 1.0 0.0 1.0 1.0 0.0
 1.0 0.0 1.0 0.0 0.0 1.0

julia> convertlabel(LabelEnc.TrueFalse(), [-1,1,-1,1,1,-1])
6-element Array{Bool,1}:
 false
 true
 false
 true
 true
 false

julia> convertlabel(LabelEnc.Indices(3), [:no,:maybe,:yes,:no], LabelEnc.NativeLabels([:yes,:maybe,:no]))
4-element Array{Int64,1}:
 3
 2
 1
 3

It may be interesting to point out explicitly that we provide
special treatment for LabelEnc.OneVsRest to conveniently
convert a multi-class problem into a two-class problem.

julia> convertlabel(LabelEnc.OneVsRest(:yes), [:yes,:no,:no,:maybe,:yes,:yes])
6-element Array{Symbol,1}:
 :yes
 :not_yes
 :not_yes
 :not_yes
 :yes
 :yes

julia> convertlabel(LabelEnc.ZeroOne(Float64), [:yes,:no,:no,:maybe,:yes,:yes], LabelEnc.OneVsRest(:yes))
6-element Array{Float64,1}:
 1.0
 0.0
 0.0
 0.0
 1.0
 1.0

We also allow a more concise way to specify that your are using a
LabelEnc.NativeLabels encoding by just passing the
label-vector directly, that you would normally pass to its
constructor.

julia> convertlabel([:yes,:no], [-1,1,-1,1,1,-1])
6-element Array{Symbol,1}:
 :no
 :yes
 :no
 :yes
 :yes
 :no

julia> convertlabel(LabelEnc.Indices(3), [:no,:maybe,:yes,:no], [:yes,:maybe,:no])
4-element Array{Int64,1}:
 3
 2
 1
 3

In many cases it can be inconvenient that one has to explicitly
specify the label-type and number of labels for the desired
output-encoding. To that end we also allow the output-encoding
to be specified in terms of an encoding-family (i.e. as DataType).

	
convertlabel(dst_family, arr[, src_encoding][, obsdim])

	Converts the given array arr from the src_encoding into
some concrete label-encoding that is a subtype of dst_family.
This way the method tries to preserve the eltype of arr
if it is numeric. Furthermore, the concrete number of labels
need not be specified explicitly, but will instead be inferred
from src_encoding.

If src_encoding is not specified it will be
inferred automaticaly using the function labelenc().
This should not negatively influence type-inference.

	Parameters:

	
	dst_family (DataType) – Any subtype of
LabelEncoding{T,K,M}.
It denotes the desired family of
label-encodings that one wants
the return value to be in.

	arr (AbstractArray) – The input targets that should be
converted into some encoding specified
by the type dst_family.

	src_encoding (LabelEncoding) – The input encoding that arr
is expected to be in.

	obsdim (ObsDimension) – Optional. Only possible if one of the
two encodings is a matrix-based encoding.
Defines which of the two array
dimensions denotes the observations.
It can be specified as a type-stable
positional argument or a smart keyword.
Defaults to Obsdim.Last().
see ?ObsDim for more information.

	Returns:

	A converted version of arr using a label-encoding
that is member of the encoding-family dst_family.

julia> convertlabel(LabelEnc.OneOfK, Int8[-1,1,-1,1,1,-1])
2×6 Array{Int8,2}:
 0 1 0 1 1 0
 1 0 1 0 0 1

julia> convertlabel(LabelEnc.OneOfK{Float32}, Int8[-1,1,-1,1,1,-1], obsdim = 1)
6×2 Array{Float32,2}:
 0.0 1.0
 1.0 0.0
 0.0 1.0
 1.0 0.0
 1.0 0.0
 0.0 1.0

julia> convertlabel(LabelEnc.TrueFalse, [-1,1,-1,1,1,-1])
6-element Array{Bool,1}:
 false
 true
 false
 true
 true
 false

julia> convertlabel(LabelEnc.Indices, [:no,:maybe,:yes,:no], LabelEnc.NativeLabels([:yes,:maybe,:no]))
4-element Array{Int64,1}:
 3
 2
 1
 3

For vector-based encodings (which means all except
LabelEnc.OneOfK), we provide a lazy version of
convertlabel() that does not allocate a new array for the
outputs, but instead creates a
MappedArray [https://github.com/JuliaArrays/MappedArrays.jl]
into the original targets.

	
convertlabelview(dst_encoding, vec[, src_encoding])

	Creates a MappedArray that provides a lazy view into vec,
that makes it look like the values are actually of the provided
output encoding new_encoding. This means that the convertion
happens on the fly when an element of the resulting mapped array
is accessed.
This resulting mapped array will even be writeable, unless
src_encoding is LabelEnc.OneVsRest.

Note that both encodings are expected to be vector-based, meaning
that this method does not work for LabelEnc.OneOfK.

	Parameters:

	
	dst_encoding (LabelEncoding) – The desired vector-based output
encoding.

	vec (AbstractVector) – The input targets that one wants to
convert using dst_encoding.
It is expected to be consistent with
src_encoding.

	src_encoding (LabelEncoding) – A vector-based label-encoding
that is assumed to have produced
the values in vec.

	Returns:

	A MappedArray or ReadonlyMappedArray that makes
vec look like it is in the encoding specified by
new_encoding

julia> true_targets = [-1,1,-1,1,1,-1]
6-element Array{Int64,1}:
 -1
 1
 -1
 1
 1
 -1

julia> A = convertlabelview(LabelEnc.NativeLabels([:yes,:no]), true_targets)
6-element MappedArrays.MappedArray{Symbol,1,...}:
 :no
 :yes
 :no
 :yes
 :yes
 :no

julia> A[2] = :no
julia> A
6-element MappedArrays.MappedArray{Symbol,1,...}:
 :no
 :no
 :no
 :yes
 :yes
 :no

julia> true_targets
6-element Array{Int64,1}:
 -1
 -1
 -1
 1
 1
 -1

Classifying Predictions

Some encodings come with an implicit interpretation of how the
raw predictions of some model (often denoted as \(\hat{y}\),
written yhat) should look like and how they can be classified
into a predicted class-label.
For that purpose we provide the function classify() and its
mutating version classify!().

	
classify(yhat, encoding)

	Returns the classified version of yhat given the encoding.
That means that if yhat can be interpreted as a positive label,
the positive label of encoding is returned.
If yhat can not be interpreted as a positive value then the
negative label is returned.

This methods supports broadcasting.

	Parameters:

	
	yhat (Number) – The numeric prediction that should be
classified into either the label representing
the positive class or the label representing
the negative class

	encoding (LabelEncoding) – A concrete instance of a
label-encoding that one wants to
work with.

	Returns:

	The label that the encoding uses to represent the class
that yhat is classified into.

For LabelEnc.MarginBased the decision boundary between
classifying into a negative or a positive label is predefined at zero.
More precisely a raw prediction greater than or equal to zero
is considered a positive prediction, while any strictly negative raw
prediction is considered a negative prediction.

julia> classify(-0.3f0, LabelEnc.MarginBased()) # defaults to Float64
-1.0

julia> classify.([-2.3,6.5], LabelEnc.MarginBased(Int))
2-element Array{Int64,1}:
 -1
 1

For LabelEnc.ZeroOne the assumption is that the raw
prediction is in the closed interval \([0, 1]\) and represents
a degree of certainty that the observation is of the positive class.
That means that in order to classify a raw prediction to either
positive or negative, one needs to decide on a “threshold” parameter,
which determines at which degree of certainty a prediction is
“good enough” to classify as positive.

julia> classify(0.3f0, LabelEnc.ZeroOne(0.5)) # defaults to Float64
0.0

julia> classify(0.3f0, LabelEnc.ZeroOne(Int,0.2))
1

julia> classify.([0.3,0.5], LabelEnc.ZeroOne(Int,0.4))
2-element Array{Int64,1}:
 0
 1

We recognize that such a probabilistic interpretation of the raw
predicted value is fairly common. So much so that we provide a
convenience method for when one is working under the assumption of
a LabelEnc.ZeroOne encoding.

	
classify(yhat, threshold)

	Returns the classified version of yhat given the decision margin
threshold. This method assumes that yhat denotes a probability
and will either return zero(yhat) if yhat is below
threshold, or one(yhat) otherwise.

This methods supports broadcasting.

	Parameters:

	
	yhat (Number) – The numeric prediction. It is assumed be a
value between 0 and 1.

	threshold (Number) – The threshold below which yhat will be
classified as 0.

	Returns:

	The classified version of yhat of the same type.

julia> classify(0.3f0, 0.5)
0.0f0

julia> classify(0.3f0, 0.2)
1.0f0

julia> classify.([0.3,0.5], 0.4)
2-element Array{Float64,1}:
 0.0
 1.0

For matrix-based encodings, such as LabelEnc.OneOfK we
provide a special method that allows to optionally specify the
dimension of the matrix that denote the observations.

	
classify(yhat, encoding[, obsdim])

	If yhat is a vector (i.e. a single observation), this function
returns the index of the element that has the largest value.
If yhat is a matrix, this function returns a vector of
indices for each observation in yhat.

	Parameters:

	
	yhat (AbstractArray) – The numeric predictions in the form of
either a vector or a matrix.

	encoding (LabelEncoding) – A concrete instance of a
matrix-based label-encoding that
one wants to work with.

	obsdim (ObsDimension) – Optional iff yhat is a matrix.
Denotes which of the two array
dimensions of yhat denotes the
observations. It can be specified as
a type-stable positional argument or
a smart keyword.
Defaults to Obsdim.Last().
see ?ObsDim for more information.

	Returns:

	The classified version of yhat. This will either be
an integer or a vector of indices.

julia> pred_output = [0.1 0.4 0.3 0.2; 0.8 0.3 0.6 0.2; 0.1 0.3 0.1 0.6]
3×4 Array{Float64,2}:
 0.1 0.4 0.3 0.2
 0.8 0.3 0.6 0.2
 0.1 0.3 0.1 0.6

julia> classify(pred_output, LabelEnc.OneOfK(3))
4-element Array{Int64,1}:
 2
 1
 2
 3

julia> classify(pred_output', LabelEnc.OneOfK(3), obsdim=1) # note the transpose
4-element Array{Int64,1}:
 2
 1
 2
 3

julia> classify([0.1,0.2,0.6,0.1], LabelEnc.OneOfK(4)) # single observation
3

Similar to other functions we expose a version that can be called
with a family of encodings (i.e. a type with free type parameters)
instead of a concrete instance.

	
classify(yhat, type)

	Returns the classified version of yhat given the family of
encodings specified by type.
That means that if yhat can be interpreted as a positive label,
the positive label of that family is returned (and the negative
otherwise). Furthermore, the type of yhat is preserved.

This method supports broadcasting.

	Parameters:

	
	yhat (Number) – The numeric prediction that should be
classified into either the label representing
the positive class or the label representing
the negative class

	type (DataType) – Any subtype of LabelEncoding{T,K,1}

	Returns:

	The classified version of yhat of the same type.

julia> classify(0.3f0, LabelEnc.ZeroOne) # threshold fixed at 0.5
0.0f0

julia> classify(0.3, LabelEnc.ZeroOne)
0.0

julia> classify(4f0, LabelEnc.MarginBased)
1.0f0

julia> classify(-4, LabelEnc.MarginBased)
-1

	
classify(yhat, type[, obsdim])

	If yhat is a vector (i.e. a single observation), this function
returns the index of the element that has the largest value.
If yhat is a matrix, this function returns a vector of
indices for each observation in yhat.

	Parameters:

	
	yhat (AbstractArray) – The numeric predictions in the form of
either a vector or a matrix.

	type (DataType) – Any subtype of LabelEncoding{T,K,2}

	obsdim (ObsDimension) – Optional iff yhat is a matrix.
Denotes which of the two array
dimensions of yhat denotes the
observations. It can be specified as
a type-stable positional argument or
a smart keyword.
Defaults to Obsdim.Last().
see ?ObsDim for more information.

	Returns:

	The classified version of yhat. This will either be
an integer or a vector of indices.

julia> pred_output = [0.1 0.4 0.3 0.2; 0.8 0.3 0.6 0.2; 0.1 0.3 0.1 0.6]
3×4 Array{Float64,2}:
 0.1 0.4 0.3 0.2
 0.8 0.3 0.6 0.2
 0.1 0.3 0.1 0.6

julia> classify(pred_output, LabelEnc.OneOfK)
4-element Array{Int64,1}:
 2
 1
 2
 3

julia> classify(pred_output', LabelEnc.OneOfK, obsdim=1) # note the transpose
4-element Array{Int64,1}:
 2
 1
 2
 3

julia> classify([0.1,0.2,0.6,0.1], LabelEnc.OneOfK) # single observation
3

We also provide a mutating version. This is mainly of interest
when working with LabelEnc.OneOfK(), in which case broadcast
is not defined on the previous methods.

	
classify!(out, arr, encoding[, obsdim])

	Same as classify, but uses out to store the result.
In the case of a vector-based encoding this will use
broadcast internally.
It is mainly provided to offer a consistent API between
vector-based and matrix-based encodings.

For convenience we also provide boolean version that assert if the
given raw prediction could be interpreted as either a positive or
a negative prediction.

	
isposlabel(yhat, encoding) → Bool

	Checks if the given value yhat can be interpreted as the positive
label given the encoding. This function takes potential
classification rules into account.

julia> isposlabel([1,0], LabelEnc.OneOfK(2))
true

julia> isposlabel([0,1], LabelEnc.OneOfK(2))
false

julia> isposlabel(-5, LabelEnc.MarginBased())
false

julia> isposlabel(2, LabelEnc.MarginBased())
true

julia> isposlabel(0.3f0, LabelEnc.ZeroOne(0.5))
false

julia> isposlabel(0.3f0, LabelEnc.ZeroOne(0.2))
true

	
isneglabel(yhat, encoding) → Bool

	Checks if the given value yhat can be interpreted as the negative
label given the encoding. This function takes potential
classification rules into account.

julia> isneglabel([1,0], LabelEnc.OneOfK(2))
false

julia> isneglabel([0,1], LabelEnc.OneOfK(2))
true

julia> isneglabel(-5, LabelEnc.MarginBased())
true

julia> isneglabel(2, LabelEnc.MarginBased())
false

julia> isneglabel(0.3f0, LabelEnc.ZeroOne(0.5))
true

julia> isneglabel(0.3f0, LabelEnc.ZeroOne(0.2))
false

 Supported Encodings

Supported Encodings

The design of this packages revolves around a number of immutable
types, each of which representing a specific label-encoding.
These types are contained within their own namespace LabelEnc.
The reason for the namespace is mainly convenience, as it allows
for a simple form of auto-completion and also more concise names that
could otherwise be considered to be too ambiguous.

Abstract LabelEncoding

We offer a number of different encodings that can best be
described in terms of two orthogonal properties. The first
property is the number of classes it represents, and the
second property is the number of array dimensions it operates on.

	
LabelEncoding{T,K,M}

	Abstract super-type of all label encodings. Mainly intended for
dispatch. As such this type is not exported.
It defines three type-parameters that are useful to divide the
different encodings into groups.

	
T

	The label-type of the encoding, which specifies which concrete
type all label of that particular encoding have.

	
K

	The number of labels that the label-encoding can deal with.
So for binary encodings this will be the constant 2

	
M

	The number of array dimensions that the encoding works
with. For most encodings this will be 1, meaning that
a target array of that encoding is expected to be some
vector. In contrast to this does the encoding
LabelEnc.OneOfK defined M=2, because it
represents the target array as a matrix.

TrueFalse

	
LabelEnc.TrueFalse

	Denotes the classes as boolean values, for which true
corresponds to the positive class, and false to the
negative class.

julia> supertype(LabelEnc.TrueFalse)
MLLabelUtils.LabelEncoding{Bool,2,1}

It belongs to the family of binary vector-based encodings, and
as such represents the targets as a vector that is using only
two distinct values for its elements. That implies that it is
per defintion always binary and as such the number of labels
can be inferred at compile time.

julia> nlabel(LabelEnc.TrueFalse)
2

	
TrueFalse() → LabelEnc.TrueFalse

	Returns the singleton that represents the encoding.
All information about the encoding is already contained
withing the type. As such there is no need to specify
additional parameters.

For more information on how to use such an encoding, please look
at the corresponding parts of the documentation.

julia> true_targets = [false, true, true, false];

julia> labelenc(true_targets)
MLLabelUtils.LabelEnc.TrueFalse()

julia> label(LabelEnc.TrueFalse())
2-element Array{Bool,1}:
 true
 false

julia> nlabel(LabelEnc.TrueFalse())
2

ZeroOne

	
LabelEnc.ZeroOne

	Denotes the classes as numeric values, for which 1
corresponds to the positive class, and 0 to the
negative class. This type of encoding is often used
when the predictions denote a probabilty.

julia> supertype(LabelEnc.ZeroOne)
MLLabelUtils.LabelEncoding{T<:Number,2,1}

It belongs to the family of binary numeric vector-based
encodings, and as such represents the targets as a vector that
is using only two distinct values for its elements. In fact,
it is by definition always binary and as such the number of
labels can be inferred at compile time.

julia> nlabel(LabelEnc.ZeroOne)
2

This type also comes with support for classification (see
classify()).
It assumes that the raw predictions (often called
\(\hat{y}\)) are in the closed interval \([0, 1]\) and
represent something resembling a probabilty (or some degree of
certainty) that the observation is of the positive class. That
means that in order to classify a raw prediction to either
positive or negative, one needs to decide on a “threshold”
parameter, which determines at which degree of certainty a
prediction is “good enough” to classify as positive.

	
threshold

	A real number between 0 and 1 that defines the “cutoff”
point for classification. Any prediction less than this
value will be classified as negative and any prediction
equal to or greater than this value will be classified as
a positive prediction.

	
ZeroOne([labeltype][, threshold]) → LabelEnc.ZeroOne

	Creates a new label-encoding of the LabelEnc.ZeroOne
family.

	Parameters:

	
	labeltype (DataType) – The type that should be used to
represent the labels. Has to be a
subtype of Number.
Defaults to Float64.

	threshold (Number) – The classification threshold that
should be used in classify().
Defaults to 0.5.

For more information on how to use such an encoding, please look
at the corresponding parts of the documentation.

julia> LabelEnc.ZeroOne(Int, 0.3) # threshold = 0.3
MLLabelUtils.LabelEnc.ZeroOne{Int64,Float64}(0.3)

julia> true_targets = [0, 1, 1, 0];

julia> labelenc(true_targets)
MLLabelUtils.LabelEnc.ZeroOne{Int64,Float64}(0.5)

julia> label(LabelEnc.ZeroOne())
2-element Array{Float64,1}:
 1.0
 0.0

julia> nlabel(LabelEnc.ZeroOne())
2

MarginBased

	
LabelEnc.MarginBased

	Denotes the classes as numeric values, for which 1
corresponds to the positive class, and -1 to the
negative class. This type of encoding is very prominent
for margin-based classifier, in particular SVMs.

julia> supertype(LabelEnc.MarginBased)
MLLabelUtils.LabelEncoding{T<:Number,2,1}

It belongs to the family of binary numeric vector-based
encodings, and as such represents the targets as a vector that
is using only two distinct values for its elements. In fact,
it is by definition always binary and as such the number of
labels can be inferred at compile time.

julia> nlabel(LabelEnc.MarginBased)
2

This type also comes with support for classification (see
classify()).
It expects the raw predictions to be real numbers of arbitrary
value. The decision boundary between classifying into a
negative or a positive label is predefined at zero. More
precisely a raw prediction greater than or equal to zero is
considered a positive prediction, while any strictly negative
raw prediction is considered a negative prediction.

	
MarginBased([labeltype]) → LabelEnc.MarginBased

	Creates a new label-encoding of the
LabelEnc.MarginBased family.

	Parameters:

	labeltype (DataType) – The type that should be used to
represent the labels. Has to be a
subtype of Number.
Defaults to Float64.

For more information on how to use such an encoding, please look
at the corresponding parts of the documentation.

julia> true_targets = [-1, 1, 1, -1];

julia> labelenc(true_targets)
MLLabelUtils.LabelEnc.MarginBased{Int64}()

julia> label(LabelEnc.MarginBased())
2-element Array{Float64,1}:
 1.0
 -1.0

julia> nlabel(LabelEnc.MarginBased())
2

OneVsRest

	
LabelEnc.OneVsRest

	This is a special type of binary encoding that allows to
convert a multi-class problem into a binary one. It does so by
only “caring” about what the positive label is, and treating
everything that is not equal to it as negative.

julia> supertype(LabelEnc.OneVsRest)
MLLabelUtils.LabelEncoding{T,2,1}

It belongs to the family of binary vector-based encodings.
It is by definition always binary and as such the number of
labels can be inferred at compile time.

julia> nlabel(LabelEnc.OneVsRest)
2

While this encoding only uses to positive label to assert
class membership, it still needs to have a placeholder-value
of the same type for a negative label in order for
convertlabel() to work.

	
poslabel

	The value that will be used to represent the positive
class. This value will be used to determine if a given
value is positive (if it is equal) or negative.

	
neglabel

	Placeholder to represent the negative class. This value
will not be used to determine membership, but simply to
impute a reasonable value when converting to such an
encoding.

	
OneVsRest(poslabel[, neglabel]) → LabelEnc.OneVsRest

	Creates a new label-encoding of the one-vs-rest family. While
both a positive and a negative label have to be known to the
encoding, only the positive label is used for comparision and
asserting class membership. Note that both parameter have to
be of the same type.

	Parameters:

	
	poslabel (Any) – The label of interest.

	neglabel (Any) – The negative label. It is optional for
the common types, such as symbol, number,
or string. For label-types other than
that it has to be provided explicitly.

For more information on how to use such an encoding, please look
at the corresponding parts of the documentation.

julia> true_targets = [:yes, :no, :maybe, :yes];

julia> convertlabel(LabelEnc.OneVsRest(:yes), true_targets)
4-element Array{Symbol,1}:
 :yes
 :not_yes
 :not_yes
 :yes

julia> convertlabel(LabelEnc.MarginBased, true_targets, LabelEnc.OneVsRest(:yes))
4-element Array{Float64,1}:
 1.0
 -1.0
 -1.0
 1.0

julia> label(LabelEnc.OneVsRest(:yes))
2-element Array{Symbol,1}:
 :yes
 :not_yes

julia> nlabel(LabelEnc.OneVsRest(:yes))
2

Indices

	
LabelEnc.Indices

	A multiclass encoding that uses the integer numbers in
\(\{1, 2, ..., K\}\) as label to denote the classes.
While these “indices” are integers in terms of their values,
they don’t need to be Int as a type.

julia> supertype(LabelEnc.Indices)
MLLabelUtils.LabelEncoding{T<:Number,K,1}

It belongs to the family of numeric vector-based encodings and
can encode any number of classes. As such the number of labels
K is a free type-parameter.
It is considered a binary encoding if and only if K = 2

	
Indices([labeltype,]k) → LabelEnc.Incides

	Creates a new label-encoding of the
LabelEnc.Indices family.

	Parameters:

	
	labeltype (DataType) – The type that should be used to
represent the labels. Has to be a
subtype of Number.
Defaults to Int.

	k (Int) – The number of classes that the concoding
should represent. This parameter can be
specified as an Int or in type-stable manner
as Val{k}

For more information on how to use such an encoding, please look
at the corresponding parts of the documentation.

julia> true_targets = [1, 2, 1, 3, 1, 2];

julia> labelenc(true_targets)
MLLabelUtils.LabelEnc.Indices{Int64,3}()

julia> label(LabelEnc.Indices(3))
3-element Array{Int64,1}:
 1
 2
 3

julia> label(LabelEnc.Indices(Float32,4))
4-element Array{Float32,1}:
 1.0
 2.0
 3.0
 4.0

julia> nlabel(LabelEnc.Indices(Val{5})) # type-stable
5

OneOfK

	
LabelEnc.OneOfK

	A multi-class encoding that uses one of the two matrix
dimensions to denote the label. More precisely other words it
uses an indicator-encoding to explicitly state what class an
observation represents and what it does not represent, by
only setting one element of each observation to 1 and the
rest to 0

julia> supertype(LabelEnc.OneOfK)
MLLabelUtils.LabelEncoding{T<:Number,K,2}

It belongs to the family of numeric matrix-based encodings and
can encode any number of classes. As such the number of labels
K is a free type-parameter.
It is considered a binary encoding if and only if K = 2

	
OneOfK([labeltype,]k) → LabelEnc.OneOfK

	Creates a new label-encoding of the matrix-based
LabelEnc.OneOfK family.

	Parameters:

	
	labeltype (DataType) – The type that should be used to
represent the labels. Has to be a
subtype of Number.
Defaults to Int.

	k (Int) – The number of classes that the concoding
should represent. This parameter can be
specified as an Int or in type-stable manner
as Val{k}

For more information on how to use such an encoding, please look
at the corresponding parts of the documentation.

julia> true_targets = [0 1 0 0; 1 0 1 0; 0 0 0 1]
3×4 Array{Int64,2}:
 0 1 0 0
 1 0 1 0
 0 0 0 1

julia> labelenc(true_targets)
MLLabelUtils.LabelEnc.OneOfK{Int64,3}()

julia> label(LabelEnc.OneOfK(Float32, 4)) # returns the indices
4-element Array{Int64,1}:
 1
 2
 3
 4

julia> ind2label(3, LabelEnc.OneOfK(Float32, 4))
4-element Array{Float32,1}:
 0.0
 0.0
 1.0
 0.0

julia> nlabel(LabelEnc.OneOfK(Val{4}))
4

NativeLabels

	
LabelEnc.NativeLabels

	A multi-class encoding that can use any abritrary values to
represent any number of labels. It does so by mapping each
label-index to a class label. The class labels can be of
arbitrary type as long as the type is consistent for all
labels. Furthermore, all labels have to be specified
explicitly.

julia> supertype(LabelEnc.NativeLabels)
MLLabelUtils.LabelEncoding{T,K,1}

It belongs to the family of vector-based encodings that can
encode any number of classes. As such the number of labels
K is a free type-parameter. It is considered a binary
encoding if and only if k = 2

	
label

	A vector that contains all the used labels in their defined
order. If it only contains two values, then the first value
will be interpreted as the positive label and the second
value as the negative label.

	
invlabel

	A Dict that maps each label to their index in the vector
label. This map is used for fast lookup and generated
automatically.

	
NativeLabels(label[, k]) → LabelEnc.NativeLabels

	Creates a new vector-based label-encoding for the given
values in label. The values in label are expected to be
distinct.

	Parameters:

	
	label (Vector) – The label that the encoding should use in
their intended order

	k (DataType) – The number of labels in label. This
paramater is optional and will be computed
from label if omited. However, if the
number of labels is known at compile time
this parmater can be provided using
Val{k}

For more information on how to use such an encoding, please look
at the corresponding parts of the documentation.

julia> true_targets = [:a, :b, :a, :c, :b, :a];

julia> le = labelenc(true_targets)
MLLabelUtils.LabelEnc.NativeLabels{Symbol,3}(Symbol[:a,:b,:c],Dict(:c=>3,:a=>1,:b=>2))

julia> label(le)
3-element Array{Symbol,1}:
 :a
 :b
 :c

julia> nlabel(le)
3

julia> LabelEnc.NativeLabels([:yes, :no, :maybe], Val{3}) # type inferrable
MLLabelUtils.LabelEnc.NativeLabels{Symbol,3}(Symbol[:yes,:no,:maybe],Dict(:yes=>1,:maybe=>3,:no=>2))

FuzzyBinary

	
LabelEnc.FuzzyBinary

	A vector-based binary label interpretation without a specific
labeltype. It is primarily intended for fuzzy comparision of
binary true targets and predicted targets.
It basically assumes that the encoding is either TrueFalse,
ZeroOne, or MarginBased by treating all non-negative values
as positive outputs.

 LICENSE

LICENSE

The MLLabelUtils.jl package is licensed under the MIT “Expat” License

see LICENSE.md [https://github.com/JuliaML/MLLabelUtils.jl/blob/master/LICENSE.md] in the Github repository.

 Index

Index

 C
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | T
 | Z

C

 	
 	classify!() (built-in function)

 	classify() (built-in function), [1], [2], [3], [4]

 	
 	convertlabel() (built-in function), [1], [2]

 	convertlabelview() (built-in function)

I

 	
 	ind2label() (built-in function)

 	Indices() (built-in function)

 	invlabel

 	
 	islabelenc() (built-in function), [1], [2], [3]

 	isneglabel() (built-in function)

 	isposlabel() (built-in function)

K

 	
 	K

L

 	
 	label (LabelEnc attribute)

 	label() (built-in function), [1], [2], [3]

 	label2ind() (built-in function)

 	labelenc() (built-in function), [1]

 	labelfreq!() (built-in function)

 	
 	labelfreq() (built-in function), [1]

 	labelmap!() (built-in function), [1]

 	labelmap() (built-in function)

 	labelmap2vec() (built-in function)

 	labeltype() (built-in function)

M

 	
 	M

 	
 	MarginBased() (built-in function)

N

 	
 	NativeLabels() (built-in function)

 	neglabel

 	
 	neglabel() (built-in function), [1]

 	nlabel() (built-in function), [1], [2]

O

 	
 	OneOfK() (built-in function)

 	
 	OneVsRest() (built-in function)

P

 	
 	poslabel (LabelEnc attribute)

 	
 	poslabel() (built-in function), [1]

T

 	
 	T

 	
 	threshold (LabelEnc attribute)

 	TrueFalse() (built-in function)

Z

 	
 	ZeroOne() (built-in function)

nav.xhtml

 Table of Contents

 		
 MLLabelUtils.jl’s documentation

 		
 Getting Started

 		
 Installation

 		
 Overview

 		
 How to … ?

 		
 Getting Help

 		
 Classification Targets

 		
 Terms and Definitions

 		
 Determine the Labels

 		
 Number of Labels

 		
 Mapping Labels to Observations

 		
 Frequency of Labels

 		
 Working with Encodings

 		
 Inferring the Encoding

 		
 Asserting Assumptions

 		
 Properties of an Encoding

 		
 Converting to/from Indices

 		
 Converting between Encodings

 		
 Classifying Predictions

 		
 Supported Encodings

 		
 Abstract LabelEncoding

 		
 TrueFalse

 		
 ZeroOne

 		
 MarginBased

 		
 OneVsRest

 		
 Indices

 		
 OneOfK

 		
 NativeLabe